If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+864x-3456=0
a = 5; b = 864; c = -3456;
Δ = b2-4ac
Δ = 8642-4·5·(-3456)
Δ = 815616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{815616}=\sqrt{2304*354}=\sqrt{2304}*\sqrt{354}=48\sqrt{354}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(864)-48\sqrt{354}}{2*5}=\frac{-864-48\sqrt{354}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(864)+48\sqrt{354}}{2*5}=\frac{-864+48\sqrt{354}}{10} $
| 6(-4x+2)=60 | | 15^(x-10)=13^(3x) | | 6x-(5+7)=12 | | b-7/4=-2/3 | | x+23=2x+4 | | 5x+6+7x=-9x+12 | | -1/7+(y)=-3/4 | | -1/7+(x)=-3/4 | | 4(2)n=48 | | -4m+5+7=16-6m | | x+2÷2=4 | | 6x-15+7=12 | | -15+m=17 | | x+2÷5=4 | | 15x=1945 | | x+3.5=50 | | 3(3)w=54 | | 3d-24=9d+18+1 | | x-65=104.34 | | 4t^2+9t+120=500 | | 18=2(v+7)-6v | | x+8.2=14.7 | | 2(3)+d=21 | | 2x+130-50=200 | | n/6/11=201/6/142/3 | | (x^2-4x-1)=0 | | 49-81y^2=0 | | 4(2)+m=35 | | 7x+30=141+50 | | 7x+30=141450 | | a^2-4a+51=0 | | 5(6w+4)−14=−10(−3w−5)−44 |